
Redux's Three Principles

Single source of truth
State is read-only
Changes are made with pure functions

Glossary

State

type State = any

Action

type Action = { type: String , payload: any }

Reducer

type Reducer<State, Action> = (State , action) => State

Dispatching Functions

type BaseDispatch = (action) => Action

type Dispatch = (action | aSyncaction) => any

Action Creator

type ActionCreator = (any) => Action | AsyncAction

Async Action

type AsyncAction = any

Middleware

type MiddlewareAPI = { diSpatch: diSpatch , getState: () => State }

type Middleware = (Middlewareapi) => (diSpatch) => Dispatch

Store

type Store =

{

 dispatch(action | aSyncaction) => any,

 getState() => State,

 subscribe(() => Void) => () => void,

 replaceReducer(reducer) => void

}

Store Creator

type StoreCreator = (reducer , ?initialState , ?enhancer) => Store

Store Enhancer

type StoreEnhancer = (Storecreator) => StoreCreator

import React from 'react'
import ReactDOM from 'react-dom'
import { createStore, combineReducers,
 applyMiddleware, bindActionCreators } from 'redux'

const greetingReducer = (state='' , action) => {
 switch (action.type) {
 case 'SAY_HELLO': return 'Hello '
 case 'SAY_GOODBYE': return 'Goodbye '
 }
 return state
}

const nameReducer = (state='John', action) => {
 switch (action.type) {
 case 'CHANGE_NAME': return 'Joel'
 }
 return state
}

const actionLogger = ({dispatch, getState}) =>
 (next) => (action) =>
 { console.log(action); return next(action) }

const reducers = combineReducers({
 greeting: greetingReducer,
 name: nameReducer
})

const middleware = applyMiddleware(actionLogger)
const store = createStore(
 reducers,
 { greeting: '(Roll over me) '},
 middleware
)

const changeName = () => {return { type: 'CHANGE_NAME' }}
const hello = () => {return { type: 'SAY_HELLO' }}
const goodbye = () => {return { type: 'SAY_GOODBYE' }}

const Hello = (props) =>
 <div
 onMouseOver={props.hello}
 onMouseOut={props.goodbye}
 onClick={props.changeName}>
 {props.greeting}{props.name}
 </div>

const render = () => {
 ReactDOM.render(
 <Hello
 greeting={store.getState().greeting}
 name={store.getState().name}
 {...bindActionCreators({changeName, hello, goodbye},
 store.dispatch)}
 />,
 document.getElementById('root')
)
}

render()
store.subscribe(render)

createStore(reducer , ?initialState , ?enhancer) ⇒ Store

action = { type: String, ...payload: any }

store = { ... }

function actionCreator(?any) ⇒ Action|AsyncAction

bindActionCreators(actioncreatorS , diSpatch) ⇒ Fn | Obj

combineReducers({reducerS}) ⇒ Function

function reducer(State , action) ⇒ State

applyMiddleware(...MiddlewareS) ⇒ Function

Creates a Redux store that holds the complete state tree of your app.
There should only be a single store in your app.

Holds action payloads in plain javascript objects. Must have a type property that
indicates the performed action, typically be defined as string constants. All other
properties are the action's payload.

Brings together your application's state and has the following responsibilities:

• Allows access to state via getState();
• Allows state to be updated via dispatch(action);
• Registers listeners via subscribe(listener);
• Handles unregistering of listeners via the function returned by sub-

scribe(listener).

Creates an action with optional payload and bound dispatch.

Turns an object whose values are action creators, into an object with the same keys,
but with every action creator wrapped into a dispatch call so they may be invoked
directly.

Combines multiple reducers into a single reducing function with each reducer as a
key/value pair. Can then be passed to createStore().

Takes the previous state and an action, and returns the next state.

Splitting your app into multiple reducers (greetingsReducer, nameReducer) allows
for a clean separation of concerns when modifying your application's state.

Welcome to the egghead.io Redux cheat sheat! On your left you
will find a full-fledged Redux application with a React.js front-end
(React is not required).

Extends Redux with custom functionality by wrapping the store’s dispatch method.

function middleware({diSpatch, getState}) ⇒ next ⇒ action
Receives Store’s dispatch and getState functions as named arguments, and
returns a function. That function will be given the next middleware’s dispatch method,
and is expected to return a function of action calling next(action) with a potentially
different argument, or at a different time, or maybe not calling it at all. The last
middleware in the chain will receive the real store’s dispatch method as the next
parameter, thus ending the chain.

Redux Cheat Sheet (3.2.1)

